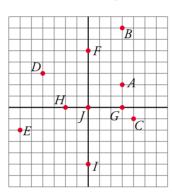
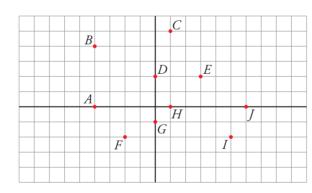
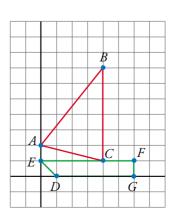
PÁGINA 253

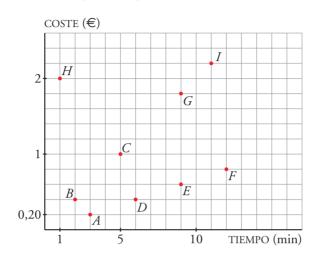

EJERCICIOS DE LA UNIDAD

Interpretación de puntos

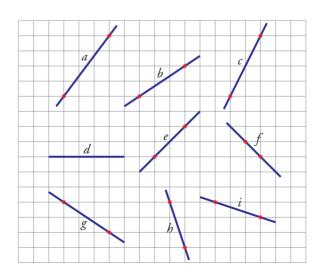

1 AAA Dibuja sobre un papel cuadriculado unos ejes coordenados y representa los siguientes puntos:

A(3, 2); B(3, 7); C(4, -1); D(-4, 3); E(-6, -2);


F(0,5); G(3,0); H(-2,0); I(0,-5); J(0,0)


2 $\triangle \triangle$ Di las coordenadas de cada uno de los siguientes puntos:

- A(-4, 0) B(-4, 4)
- C(1,5) D(0,2)
- E(3, 2) F(-2, -2)
- G(0,-1) H(1,0)
- I(5, -2) J(6, 0)
- 3 $\triangle \triangle$ Representa los puntos: A(0, 2); B(4, 7); C(4, 1); D(1, 0); E(0, 1); F(6, 1); G(6, 0). Une mediante segmentos AB, BC, CA, DE, EF, FG, GD.


4 AAA Cada punto del diagrama siguiente representa una llamada telefónica:

- a) ¿Cuál ha sido la llamada más larga?
- b) ¿Cuál ha sido la llamada más corta?
- c) Una de las llamadas ha sido a Australia. ¿De cuál crees que se trata?
- d) Hay varias llamadas locales. ¿Cuáles son?
- a) La llamada más larga ha sido la F, 12 minutos.
- b) La llamada más corta ha sido la H, 1 minuto.
- c) Debe ser la *H* porque, siendo muy corta en tiempo (1 minuto), es de las más caras, 2 €.
- d) Las llamadas locales son A, D, E y F (todas cuestan $0.20 \in \text{cada } 3 \text{ minutos}$).

REPRESENTACIÓN DE RECTAS

5 AAA Halla la pendiente de cada una de las siguientes rectas:

a)
$$\frac{4}{3}$$

b)
$$\frac{2}{3}$$

b)
$$\frac{2}{3}$$
 c) $\frac{4}{2} = 2$

e)
$$\frac{2}{2} = 1$$
 f) -1

$$g) - \frac{2}{3}$$

h)
$$-3$$

h)
$$-3$$
 i) $-\frac{1}{3}$

6 AND Representa las siguientes funciones:

a)
$$y = 2x$$

b)
$$y = \frac{1}{2}x$$

c)
$$y = -3x$$

$$d) y = \frac{4}{3}x$$

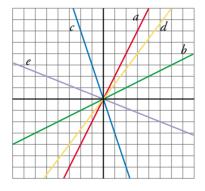
e)
$$y = -\frac{2}{5}x$$

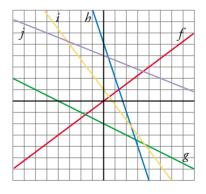
$$f) y = \frac{3}{4}x$$

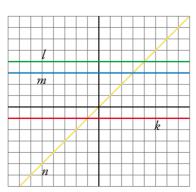
g)
$$y = -\frac{1}{2}x - 2$$

h)
$$y = -3x + 5$$

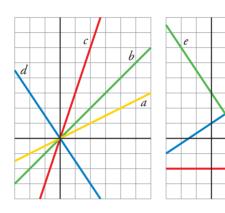
i)
$$y = -\frac{4}{3}x + 1$$


$$j) y = -\frac{2}{5}x + 4$$


k)
$$y = -1$$


1)
$$y = 4$$

$$\mathbf{m}) y = 3$$


$$\mathbf{n}) y = x$$

7 ACC Escribe la ecuación de cada una de las siguientes funciones:

a)
$$y = \frac{1}{2}x$$

b)
$$y = x$$

c)
$$y = 3x$$

c)
$$y = 3x$$
 d) $y = -\frac{3}{2}x$

e)
$$y = 3 - \frac{3}{2}x$$

e)
$$y = 3 - \frac{3}{2}x$$
 f) $y = 1 + \frac{2}{3}x$ g) $y = -2$

g)
$$y = -2$$

PÁGINA 254

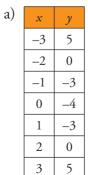
PROBLEMAS CON FUNCIONES

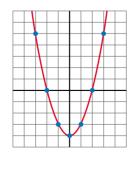
9 AAA Representa las siguientes parábolas obteniendo en cada caso una tabla de valores:

a)
$$y = x^2 - 4$$

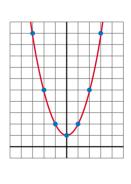
$$b) y = x^2 + 1$$

c)
$$y = -x^2$$


$$d) y = -x^2 + 1$$

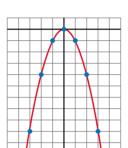

e)
$$y = (x-2)^2$$

f)
$$y = (x-2)^2 - 4$$

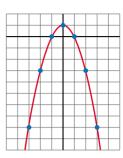

$$\mathbf{g}) \ \mathbf{y} = \mathbf{x}^2 - 4\mathbf{x}$$

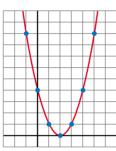
e)
$$y = (x-2)^2$$

h) $y = x^2 - 4x + 3$



b)	х	у
	-3	10
	-2	5
	-1	2
	0	1
	1	2
	2	5
	3	10



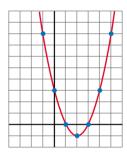


x	y
-3	-8
-2	-3
-1	0
0	1
1	0
2	-3
3	-8

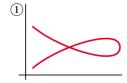
e)

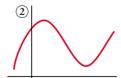
)	x	y
	-1	9
	0	4
	1	1
	2	0
	3	1
	4	4
	5	9

f)

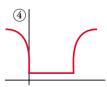

\boldsymbol{x}	у
-1	5
0	0
1	-3
2	-4
3	-3
4	0
5	5
	-1 0 1 2 3 4

g)

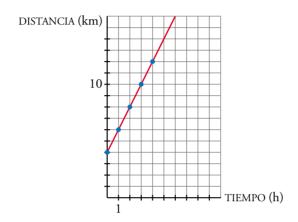

x	y
-1	5
0	0
1	-3
2	-4
3	-3
4	0
5	5


h)

\boldsymbol{x}	у
-1	8
0	3
1	0
2	-1
3	0
4	3
5	8



10 ACC ¿Cuáles de las siguientes gráficas corresponden a una función y cuáles no?

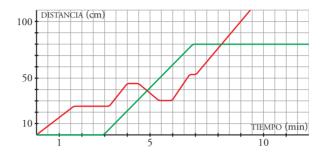


Corresponden a una función las gráficas 2 y 4.

11 AM Margarita pasea alejándose de su pueblo a una velocidad de 2 km/h. En este momento se encuentra a 4 km del pueblo. ¿Dónde se encontrará dentro de una hora? ¿Dónde se encontraba hace una hora?

Representa su distancia al pueblo en función del tiempo transcurrido a partir de ahora. Halla la ecuación de la función llamando x al tiempo e y a la distancia al pueblo.

- Dentro de una hora se encontrará a 6 km del pueblo.
- Hace una hora se encontraba a 2 km del pueblo.
- Ecuación: y = 2x + 4


INTERPRETACIÓN DE GRÁFICAS

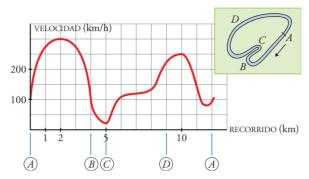
12 AAA Representa gráficamente una carrera de 200 m entre dos corredores, con las siguientes características:

A sale más rápidamente que B y, en 5 segundos, le saca 10 m de ventaja. A se cae en el instante 5 s y B le adelanta. Pero A se levanta en 2 s y adelanta a B en la misma línea de meta.

13 AAAA Rafael y María ponen a competir, en una carrera, a sus caracoles; uno de ellos lleva una pegatina roja y otro una pegatina verde.

El verde tarda en salir y se para antes de llegar. ¿Cuánto tiempo está parado en cada caso? ¿A qué distancia de la meta se para definitivamente? ¿Cuántos centímetros y durante cuánto tiempo marcha el rojo en dirección contraria? Describe la carrera.

- a) El caracol con una pegatina verde está parado, en la salida, 3 minutos y, más tarde, desde el minuto 7 hasta que finaliza la carrera, se para a 30 cm de la meta.
- b) El rojo, marcha en sentido contrario durante 1 minuto una distancia de 15 centímetros.
- c) Al comenzar la carrera, el verde no toma la salida, manteniéndose parado durante 3 minutos.


El rojo marcha a una velocidad uniforme y recorre, en algo más de un minuto y medio, unos 25 centímetros. Se para durante 1,5 minutos y vuelve a iniciar la marcha, recorriendo en 3/4 de minuto unos 20 centímetros. Se vuelve a parar durante 1/2 minuto y regresa sobre sus pasos 15 centímetros en 1 minuto.

Aprovecha esta coyuntura el verde, que inició su carrera en el minuto 3 a una velocidad de 20 cm/min, para adelantar al rojo en el minuto 5 de la carrera y a una distancia del punto de salida de 40 cm. El verde continúa con esa velocidad hasta el minuto 7, en el que ha avanzado 80 cm y se para, no volviendo a reanudar su carrera.

Nos quedamos con el rojo en el minuto 5,5, en el que se para medio minuto y empieza a avanzar durante 3/4 minutos, se vuelve a parar medio minuto a 55 centímetros de la salida y, desde aquí, como una bala, a 25 cm/min, se dirige hacia la meta, adelantando al verde a 80 cm de la salida en el minuto 8 y 20 segundos, aproximadamente.

Gana el caracol con la etiqueta roja.

14 AAA Esta gráfica describe la velocidad de un bólido de carreras en cada lugar de un circuito:

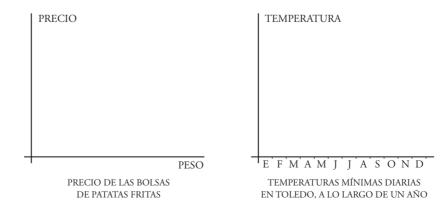
Di en qué tramos la velocidad es creciente y en cuáles es decreciente. ¿A qué crees que se deben los aumentos y disminuciones de velocidad?

La velocidad es creciente:

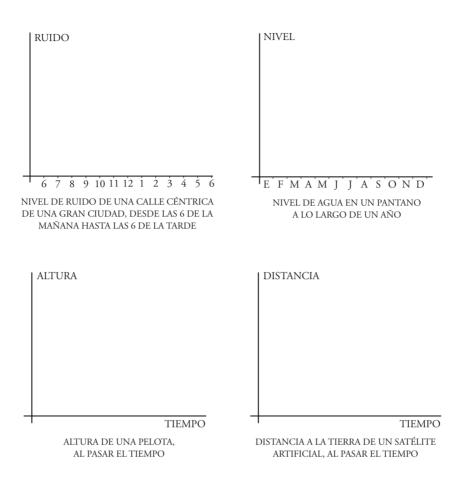
- Desde 0 (punto A) hasta el kilómetro 2.
- Desde el kilómetro 5 (punto *C*) hasta el kilómetro 10 (un poco después de *D*).
- Desde el kilómero 11,5 hasta A (empieza de nuevo el circuito).

La velocidad es decreciente:

- Desde el kilómetro 2 hasta el kilómetro 5 (punto *C*).
- Desde el kilómetro 10 hasta 500 m antes de llegar a A (empieza de nuevo el circuito).

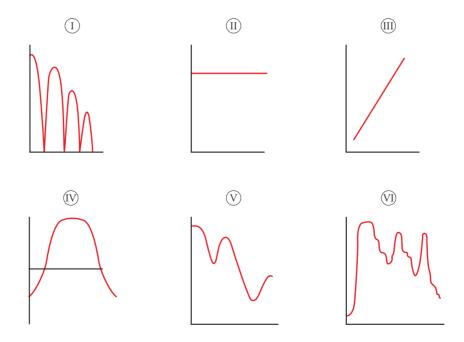

Las disminuciones de velocidad parecen causadas por las curvas del circuito. Así, en la curva más cerrada, *C*, la velocidad es mínima.

Los aumentos de velocidad, según la gráfica, se identifican con los tramos del circuito en que no hay curvas.


PÁGINA 255

PROBLEMAS DE ESTRATEGIA

15 Representa una gráfica que refleje cada una de las situaciones que se describen a continuación:



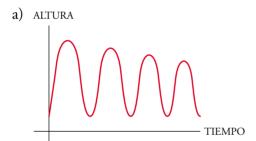
Para representar las gráficas puedes fijarte en las seis siguientes.

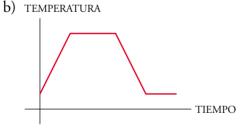
Responden, en otro orden, a lo que se te pide:

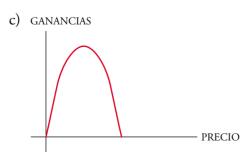
Precio de las bolsas de patatas fritas \to III

Temperaturas mínimas diarias en toledo, a lo largo de un año \to IV

Nivel de ruido de una calle céntrica de una gran ciudad \to VI


Nivel de agua en un pantano a lo largo de un año \to V


Altura de una pelota al pasar el tiempo \to I


Disancia a la tierra de un satélite artificial, al pasar el tiempo \to II

16 Y ahora, sin ninguna ayuda. Representa las siguientes funciones:

- a) La altura a la que se encuentra el asiento de un columpio, al pasar el tiempo.
- b) La temperatura de un cazo de agua que se calienta al fuego hasta que hierve y luego se deja enfriar.
- c) Las ganancias de una casa de alquiler de vídeos según su precio: si son demasiado baratos, alquilará muchos, pero ganará poco, y si son demasiado caros, alquilará pocos y también ganará poco.

